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The problem of equistressed reinforcement of Kirchhoff plates with fibres of constant cross-section in the case of elastoplastic 
transverse bending is formulated. A qualitative analysis of the system of resolvents is carried out. The possibility of the existence 
of several alternative solutions which can be controlled by a redistribution of the reinforcement densities is demonstrated. An 
analytic solution of the problem is obtained for the case of the cylindrical bending of a rectangular elongated plate. Calculations 
are carried out for boroaluminium, which show that the carrying capacity of equistressed reinforced plates with elastoplastic 
bending is several times greater than in the case of purely elastic bending. © 2004 Elsevier Ltd. All rights reserved. 

The requirement that the fibres should be equistressed along their trajectories, which enables one to 
utilize the carrying capacity of high-strength equipment to the greatest extent and to construct reliable 
structures even when a low-strength binder is used, serves as one of the most natural strength criteria 
in the rational design of composite structures. Due to the current interest in the problem of equistressed 
reinforcement, many papers [1-5, etc.] are concerned with this. However, up to now, it has been assumed 
when investigating the problem of the equistressed reinforcement of bending plates that all of the phases 
of the composition behave in a linear elastic manner [4, 5], that is, no account has been taken of the 
actual behaviour of the phase materials beyond the yield point and no estimation has been made of 
the effectiveness of the carrying capacity of real fibres in the treatment of the equistressed reinforcement 
problem in an elastic formulation. In this connection, the aim of this paper is to give a mathematical 
formulation and qualitative analysis of the problem of the equistressed reinforcement of plates with 
elastoplastic transverse bending and, also, a comparison, based on specific examples, of the carrying 
capacity of plates with equistressed reinforcement in the case of purely elastic and elastoplastic bending. 

1. T H E  I N I T I A L  E Q U A T I O N S  O F  T H E  P R O B L E M  O F  T H E  
E Q U I S T R E S S E D  R E I N F O R C E M E N T  O F  P L A T E S  W I T H  

E L A S T O P L A S T I C  T R A N S V E R S E  B E N D I N G  

We shall consider the purely elastic and elastoplastic transverse bending of Kirchhoff plates of constant 
thickness H, consisting of an isotropic matrix and a thin filament, homeogeneous, high modulus 
reinforcement of constant cross-section which is embedded into it. It is assumed that the plate has a 
regular and quasi-homogeneous structure throughout its thickness, that the action of heat is ignored 
and that the deflections are small. All of the phases of the composition can behave in a linearly elastic 
or in an inelastic manner. The way in which a plate is loaded is assumed to be quasistatic and simple 
and the relations of the theory of elastoplastic deformations [6, 7] are therefore used to describe the 
non-linearly elastic or inelastic behaviour of the phase materials. The requirement that fibres of all of 
the groups in the whole of the domain G occupied by the plate in the plan view should be equistressed 
emerges as the rational design criterion. 

The plate is considered in a rectangular Cartesian system of coordinates xlxzz; the plane xlx2 is made 
coincident with the middle plane of the plate before it is bent and the z-axis is perpendicular to the 
middle plane. The plate is reinforced with N groups of fibres (which are possibly of a different physical 
nature)) which are laid in planes parallel to the plane xlx2. 

In order to formulate the problem of the equistressed reinforcement of transversely bent Kirchhoff 
plates, it is necessary to use the well-known equilibrium equations in the shearing forces Fi and torques 
m o [71 
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FI, I + F 2 , 2 +  p = O, Mil ,  l + M i 2 , 2  = F i - m i ,  i = 1,2 

the relation between the mean stresses in the composition Gij and the moments Mij 

H/2 

Mij = I t~jzdz, i, j = 1,2 
-HI2 

the relations between the bending deformations eli and the deflection w 

I~,ij = --ZW,ij, i, j = 1, 2 (IZl < HI2)  

(1.1) 

(1.2) 

(1.3) 

and, also, the expressions for the average stresses Gij in terms of the stresses in the phase materials (a 
model of a layer reinforced with "one-dimensional' fibres [8] is used) 

~ij = aOmij + £~ktOklkilkj (i, j = 1, 2) 
k 

lkl = c o s l l / k ,  lk2 = s i n ~ k ,  a = 1 - ~ t . 0 ~  
k 

(1.4) 

wherep and m i are the distributed transverse load and the external bending moments respectively, am0 
and Gk are the stresses in the binding matrix and in the kth group of the reinforcement respectively, to k 
and ~k are the intensity and the angle (measured from the Xl direction) of the reinforcement with a 
fibre of the kth group, summation is carried out from 1 to N and the subscript i after a comma denotes 
partial differentiation with respect to the variable xi, etc. 

We shall assume that the tensile and compression diagrams of the phase materials are identical and 
have a linear reinforcement. The relation between the stress Gk and the longitudinal deformation ~k of 
the kth reinforcement group has the form [8] 

fEkgk, I£kl < esk = ~,klEk 
(~k 

[ sign(ek)%k + Esk(ek - sign(ek)e,k), e,k < NI - e ,k -  (1.5) 

where Gsk is the yield point of the material of the kth group of fibres, Ek and E~ are the moduli of elasticity 
and of strain hardening of the material of the kth group of fibres, and Esk and e.k are the deformations 
corresponding to the yield point and the ultimate strength O'pk of the material of the kth group of fibres, 
respectively. 

The relation between the deformations of the plate eij and the deformations of the fibres ek is 
determined, within the framework of a model one-dimensional fibres, by the relations [8] 

2 . 2 
E k = EllCOS II/k+E22Sln Iltk+el2sin2~k, k = 1,2 . . . . .  N (1.6) 

According to relations (1.3), (1.5) and (1.6), the maximum values of the stresses in the reinforcement 
with respect to their modulus are attained on the faces of the plate (z = +_H/2) and therefore, to ensure 
that there is no ambiguity, we will specify the equistressed reinforcement condition solely on the upper 
side of the plate (z = H/2). 

ok(xl, x 2,H/2) = t~0k = const, k = 1,2 . . . . .  N (1.7) 

where G0k is the stress value in the kth group of fibres on the upper side of the plate (on the lower side, 
~k(Xl, x2, -H/2)  = -~0k = const). 

If I G0kl --- ~sk. it follows from relations (1.3) and (1.5)-(1.7) that 

t~k(xl, x 2, z) = 2Zt~ok/H (Izl < HI2)  (1.8) 

If, however, I ~0kl > ~sk, it follows from the same relations that 

f EkZek = 2zsign(Ook)t~,Jhk, Izl < h J 2  
(~k(Xl, x 2 , Z) 

[sign(z~0k)tY,k + E~k[ze k - sign(zc0t)esk], hk/2 < IZ[ < HI2 
(1.9) 
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where hk/2 are the absolute magnitudes of the z coordinates o f  the boundaries between the elastic and 
inelastic layers in the kth group of reinforcement (that is, when I z [ < hk/2, a fibre of the kth group behaves 
in an elastic manner and, when hk/2 < Izl < H/2, it behaves in an inelastic manner), and ek is the bending 
parameter of the middle plane of the plate in the direction of the reinforcement with a fibre of the kth 
group which, according to relations (1.3) and (1.6), has the expression 

2 , 2 
e k = -w.11cos Iltk-W.z2sm Iltk-W.12sin211t k, k = 1,2 . . . . .  N (1.10) 

On the other hand, it follows from the equistressed reinforcement condition (1.7) and expressions 
(1.3), (1.5), (1.6) and (1.10) that 

1 2(~Ok/(HEk) = const, I(~okl < (Y~k 

ek = 2 
-E--s,[Ook - slgn(ook)(O~k- E~ke~k)] = const, I(Y0kl > (Ysk 

(1.11) 

Hence, instead of the equistressed reinforcement condition (1.7), the geometrical condition 

e k = const, k = 1,2 . . . . .  N (1.12) 

can be used. The value of ek is given by expressions (1.10) and (1.11). 
By virtue of the linear distribution of the deformations throughout the thickness of the plate (1.3) 

and according to its meaning, the quantities hk in formula (1.9) are given by the equalities 

= I H  = const, Io0k[ <e;sk 

hk [ 2esk/lek] = eonst, [OOkl > Osk 
(1.13) 

that is, by virtue of the equistressed reinforcement condition (1.11), hk = const everywhere in the domain 
G. 

The linearly elastic behaviour of the binder material is determined by Hooke 's  law 

(Ymii = E a l ( E i i + V E j j ) ,  (Ymij = Ea2Eij, J = 3 - i ,  i = 1 , 2  ([zl<_h/2) (1.14) 

and the intensity of the strains ~0 in this case is equal to [7] 

~ 3 3 J  2 2 2 E0 = a3 (E l l  - a4£11£22 + ~22) + El2 (1.15) 

where 
2 2 1 1 1 - v + v  1 - 4 v + v  

a l -  2' a2 = a3 = 2 '  a 4 -  2 (1.16) 
1 - V  l + v '  3 ( 1 - v )  1 - v + v  

E and v are the modulus of elasticity and Poisson's ratio of the binder. 
The non-linearly elastic and inelastic behaviour of the binder material is defined by the fundamental 

relations of the theory of elastoplastic deformations [6, 7], which have been simplified by assuming that 
the material is incompressible (while not affecting the essence of the problem, there are significant 
difficulties associated with taking account of compressibility in the inelastic behaviour of the binder of 
a bending plate even in the simple case of the deformation of a material without strengthening [6, 7]). 
In the case when a strain diagram with linear strengthening is used, the relations between the stresses 
(Yn~j and strains Eij beyond the limits of linear elasticity when there is no dilatation has the form 

2 
(Ymii = ~-~[(Ys + E , ( e -  8, ) ] (213i i  + [3jj) 

2 
(Ymij = "~[~Js+E*(e-E. ) ]8 i j ;  J = 3 - i ,  i =  1,2 

(1.17) 
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where as and E ,  are the yield point and the strengthening modulus of the binder material, which are 
known from the strain diagram [6], e,  is the strain corresponding to cys in the strain diagram and, assuming 
the binder material is incompressible, the strain intensity e has the expression [7] 

2 22)/3 g 2 = 4(e~l + EllE22 + E22 + (1.18) 

We will now introduce into the treatment the positive quantities e0 and e, which are composed of the 
parameters w,ij for the distortion of the median plane of the plate in the same way as for the intensities 
~0 and ~ in (1.15) and (1.8) respectively 

2 
e 0 : ~ 3(W21l-a4W,llW,22-I.-w222) + w,12 (1.19) 

2 4(w21, + w llw,22 + w222 + w2]z)/3 (1.20) e = 

It then follows from relations (1.3), (1.15) and (1.18)-(1.20) that 

e o = IZleo(X 1, x2), e = Iz[e(x 1, x2) (1.21) 

In the case of an elastoplastic stressed state in the outer layers of the binder adjacent to the forces, 
the binder material behaves in an inelastic manner while the middle layer still remains elastic. 
Consequently, if h/2 is the absolute value of the z coordinate of the boundaries between the elastic and 
inelastic in the binder, then the stress intensity 

(y < ~,(0 < Iz[ < h/2),  ~ > ~ (h/2 < ]z[ < H/2)  (1.22) 

In the elastic layer of the binder, the stress intensity is equal to [6, 7] 

(y = 3Grog 0 = 3Gmlzle o, G m = El[2(1 +v) ]  (1.23) 

where Gm is the shear modulus of the bonding matrix. At the boundaries Izl = h/2 between the elastic 
and inelastic layers in the binder (y = (;, and it therefore follows from (1.23) that 

h , / 2  = ~J,/(3Gmeo) (1.24) 

whence 

H = const, h ,  > H  
h = (1.25) 

h , ,  h ,  < H 

Relations (1.9), (1.24) and (1.25) determine the thickness h of the elastic layer in the binder in terms 
of the second derivatives of the deflection while, in the general case, h ~ const. 

Finally, when account is taken of expressions (1.3), (1.14), (1.17) and (1.21), the stresses in the binder 
(Jmij a r e  given by the relations 

~Jmii = -zEal(w, i i  + vw,jj),  ~mij = -zEazw,ij  (Izl <h/2)  (1.26) 

~rnii = -A(z) (2w, i i  + w,jj), ~mij = -A(z)w, i j '  J = 3 - i ,  i = 1, 2 

A(Z) = 2[zE,  + s i g n ( z ) ( ~ -  E , e , ) / e ] / 3 ,  h/2 < Izl < H/2  (1.27) 

The quantities al and as are defined by formulae (1.16). 
Substituting relations (1.4) into expression (1.2) and taking account of the representation (1.9), (1.13) 

and (1.25)-(1.27), in a plate with an equistressed reinforcement structure we obtain the following 
expressions for the moments in terms of the deflection of the plate 

Mij  = aMmi  j + Z tl)klkilkj × (1.28) 
k 

× [gkekh  ~ 3 3 • 2 2 + Eskek(H - h~) + 3 s]gn(~0k)(cJ~k- Eske, k)(H - hk)]/12, i, j = 1, 2 
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HI2 

Mmij = f gmijZdz, i, j = 1,2 
-HI2 

Mini i = - [Ealh3(w ii + v w  jj) + B(2w,i i + w,jj)]/12 

Mini j = -(Ea2 h3+B)wi j /12 ,  j = 3 - i ,  i = 1,2 

B = 2[ (H 3 - h3)E. /3  + (~s - E . ~ . ) (  H2 - h2)/e] 

(1.29) 

If [(Y0k] < C~s~, h .  _> H (see (1.13), (1.24) and (1.25)), it is necessary to put hk = h = H in relations 
(1.28) and (1.29), after which we obtain expressions for the moments in the case of purely elastic bending 
of a plate with equistressed reinforcement. 

The condition for the cross-sections of the fibres to be constant [3] 

(03kCOS\l/k),l -t" (03ksin~k), 2 = 0, k = 1, 2 . . . . .  N (1.3o) 

has to be added to the equilibrium equations (1.1), the expressions for the moments (1.28) and (1.29) 
the equistressed reinforcement conditions (1.10)-(1.12) and Eq. (1.24) which, when relations (1.19) and 
(1.25) are taken into account, determines the thickness of the elastic layer in the binder. 

Suppose the domain G is bounded by a contour F. Then, static boundary conditions with respect to 
the bending moment [7] can be specified on one side of this contour (which we shall denote by Fp) 

2 2 
M~lnl +Mzzn 2 + 2Mlznln2 = M n 

(1.31) 
n 1 = c o s ~ l ,  n 2 = s in[~ ,  (X1, X2) E Fp 

and with respect to the reduced transverse Kirchhoff force 

Fin I + F2n 2 + bx(Mn,c) = Fnz, (Xl, x2) E Fp  

Mn,~ = (M22 _ M l l ) n l n 2  + M12(n12 _ n2 )2 (1.32) 

b'~(mnx) = -n2mnx,  1 + nlmn'~,2 

while, on the other side (which we shall denote by F,), the kinematic boundary conditions 

W ( F  u) = w 0, w i n  1 + w,zn 2 = On, (Xl, X2) e Fu (1.33) 

can be specified, where Mn and Fn~ are the bending moment and the reduced transverse Kirchhoff force 
specified on Fp, w0 and On are the deflection in F, and the derivative of the deflection with respect to 
the direction of the outward normal to the contour which is given by the angle [3, and 3~ is a derivative 
along the contour. (Boundary conditions which are mixtures of (1.31)-(1.33) such as the condition of 
free support, for example, can also be specified on the contour F.) 

On the part of the contour F (which we shall denote by Fk) at which the fibres belonging to the kth 
group enter into the domain G, it is necessary to specify boundary conditions for the reinforcement 
intensities [4] 

03k(Fk) = COok, k = 1, 2 . . . . .  N (1.34) 

where m0k are functions, defined in Fk. 
The solution of the problem of the equistressed reinforcement of bending plates must satisfy the 

physical constraints [1-3] 

0<03k, k = 1,2 . . . . .  N, ~03k < ° 3 , < 1  (1.35) 
k 

and the strength constraints [6-8] 

o'(Xl, x2, +HI2) < (Ym, 

6m>0,  6~>0 ,  k = 

l ad  _< = minW; 

1,2 . . . . .  N 
(1.36) 
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where co, = const is the permissible overall reinforcement intensity, Gm is the breaking point of the 
bonding matrix, which is equal to the yield point cYs in the case of purely elastic bending or to the ultimate 
strength ~,  - Cyp in the case of elastoplastic bending, cy{ and o~- are the breaking points of the kth group 
of fibres under compression and tension respectively (under the action of compressive loads, a certain 
form of instability of the fibres can occur and, hence, in the general case, c~/~ ~ o~-). 

The generally known static and kinematic conditions for the matching of the solution [6, 7] hold at 
the boundaries Fe p between the purely elastic Ge and elastoplastic Gp zones in the binder, that is, when 
h, = H (see (1.24)). By virtue of the linear distribution of the stresses Omij throughout the thickness of 
the plate in the purely elastic zone in the binder, it follows from the first strength constraint (1.36), 
when (Ym : (Ys, that the above-mentioned boundary is determined by the equation [7] 

l-.ep: 2 2 2 = H 4 C y 2 / 3 6  = c o n s t  Mini 1 - MmllMm22 + Mm22 + 3Mini 2 (1.37) 

Hence, when formulating the problem of the equistressed reinforcement of bending plates with fibres 
of constant cross-section, it is necessary to use equations and relations (1.1), (1.10)-(1.12), (1.24), (1.25) 
and (1.28)-(1.30). In the contour F, which bounds the domain G, the static boundary conditions (1.31) 
and (1.32), the kinematic boundary conditions (1.33) or mixed boundary conditions from (1.31)-(1.33) 
and the edge conditions (1.34) can be specified. The boundary between the purely elastic and the 
elastoplastic zones in the binder, when there is a continuous change of the equistressed reinforcement 
structure in it, is defined by Eq. (1.37). The solution of the equistressed reinforcement problem must 
satisfy the physical constraint (1.35) and strength constraint (1.36) and, moreover, by virtue of the 
Kirchhoff hypothesis and the assumption that the tensile and compression diagrams of the phase 
materials are identical, it is sufficient to satisfy inequalities (1.36) on the faces of the plate (z = +_H/2). 

2. THE SYSTEM OF RESOLVENTS FOR THE P R O B L E M  OF 
THE E Q U I S T R E S S E D  R E I N F O R C E M E N T  OF PLATES IN 

THE CASE OF E L A S T O P L A S T I C  B E N D I N G  AND 
ITS QUALITATIVE ANALYSIS 

In order to obtain the equilibrium equations for the equistressed reinforcement of a plate for bending, 
it is necessary to substitute relations (1.28) and (1.29) into Eqs (1.1) and to eliminate the transverse 
forces Fi from consideration. As a result, when account is taken of the condition for the cross-sections 
of the fibres to be constant (1.30), we will have the following equilibrium equation 

where 

H2ZO,k[~n(l l lk ,  Ak ) 2 - a k ] ( O k ]  - C ( w ,  t o ,  h) = 

k 
= -12(p + ml, 1 + m2,2) (to = {°11, °)2, ..-, coN}) 

(2.1) 

Ai = t-°k~(~k, ~k), k = 1, 2 . . . . .  N (2.2) 

b(.~ • O ( . )  . ~ ( . )  O ( . )  
0s(7, ") = COST~'--~-'O.~l + smT~-Z2x2, 0,(7, .) = - s l n 7 ~ x  1 + c ° s ~  ~x 2 (2.3) 

Ak are functions, which have been introduced for convenience and have the meaning of the curvature 
of the trajectories of the kth group of equistressed reinforcement multiplied by the intensity of the 
reinforcement of this group, and 7 is a certain angle; in the zones where the binder material exhibits 
elastoplastic behaviour the differential operator C has the form 

C(w, to, h) = Z {a[Eal(w,ii "l- Vw,jj)h 3 + B(2w,i i + w,jj)] },ii"l- 
i=1,2 

+ 2[a(Ea2 h3 + B)w,12] 12, j = 3 -  i 

(2.4) 

in the zones of purely elastic behaviour of the binder material the operator C is simplified and is obtained 
from (2.4) when h = H, al, a2, e and h are defined by expressions (1.16), (1.20), (1.24) and (1.25) 
respectively, and o ,  k is a constant quantity, defined by the expression 
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3 3 2 
~,~ -- E~e,~h,k + E~ke,~(1-h,~) + 3sign(~ok)(E~-Es~)G~(1-h,~) --- const (2.5) 

The quantities h.~ and e,~ in (2.4) and (2.5) are defined by the following relations (see (1.11) and 
(1.13)) 

e*k (2.6) ek = " ~ 

I 2~ok/E k = const, ]~0k] <~sk 

e*k = [2 [~0k-  sign(60k)(ff~k- Eskesk)]/E~k = const, Io0k] > ~k  

hk = h*kH' h*k [ 2 G J [ e . k  I = cons t< l ,  (lO0k[>6~k) = Ekesk 
(2.7) 

It follows from (2.5)-(2.7) that, in the case of the purely elastic deformation of the kth group of 
reinforcement ([(~0g[ < (Y~k), the quantity cy,k in (2.1) is double the stress in this reinforcement on the 
upper side of the plate (z = H/2). 

The equistressed reinforcement conditions for the kth group of fibres (1.10) and (1.11), which we 
shall write, taking account of expressions (2.2) and (2.3), as 

3s(~tk, 3s(~k, w)) - Ak3n(~tk, w)/03 k = - e . J H  = const (2.8) 

have to be added to Eqs (2.1), (2.2) and (1.24). The condition for the cross-section of the fibres to be 
constant (1.30), which, when account is taken of the notation in (2.3), takes the form 

3s(~k, °)k) + 0~k3n(~k, gk) = 0, k = 1, 2 . . . . .  N (2.9) 

has to be used finally to close system (2.1), (2.2), (1.24), (2.8). 
In other to write the static boundary conditions (1.31) and (1.32) for the bendings, it is necessary to 

eliminate the force factors Fi and Mi from them by means of relations (1.1), (1.28) and (1.29). As a 
result, when account is taken of the condition for the cross-section of the fibres to be constant (1.3), 
we obtain the static boundary conditions on the edge Fp with respect to the moment 

2 2 
H ~.k~0kCOS (~k - 13) - DM(W, tO, h) = 12M., (x 1, x2) e Fp 

k 

(2.10) 

and with respect to the reduced Kirchhoff force 

- H 2 ~ a . k a k s i n  (~k - 13) + H2~6.k3x[0~ksin2(~k - 13)]/2 - 
k k 

-CF(W,~,h)-DF(W,a~,h)  = 12(F,,z-mlnl-m2n2), (xl, xz) e Fp 
(2.11) 

where, in the subdomains Gp with elastoplastic behaviour of the binder material, the differential 
operators DM, CF and DF are given by the expressions 

DM = Z a[Wi + B(2w. ii + w,jj )In2 + 2aw, 12(Ea2h3 + B)nln2 
i = 1 , 2  

CF "--" Z {a[Wi + B(2w,ii + w,jj)]},ini + Z [a(Ea2h3+ B)w,ij],inj 
i = 1 , 2  i = 1 , 2  

(2.12) 
OF = ~x{ nln2a Z (-1)i[Wi+ B(2w,ii+w,jj)] + 

i = 1 , 2  

+a(n~-n~)(Ea2h3+ B)w,12t, W i = Eal(w,ii+ vw,jj)h3; j = 3 - i  
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and in the subdomains G e with purely elastic behaviour of the binder material, the differential operators 
DM, CF and DF are obtained from expressions (2.12) when h -- H, where ~ is the operator of 
differentiation along the contour Fp, and 

3~(.) = ~,(l~, ")  (2.13) 

The kinematic boundary conditions (1.33), taking into account the notation used in ((2.3), take the 
form 

W(ru) --- Wo, ~s(I], w) -- 0 n (Xl, x2) E 1" u (2.14) 

Boundary conditions (1.34) remain unchanged. 
The boundary Fe p between the purely elastic and the elastoplastic zones in the binder is defined by 

the equation in deflections 

f ~ Z 2 2 H 2 2 }  2 HZE 2 a (w,i i.4- vw, j j )  - a I ( w i  i + vw,j j )  + 3a2w,12 = 4o s, j = 3 - i 
i=1,2 i--1,2 

(2.15) 

which is obtained from (1.37) taking expressions (1.29) into account. 
Hence, in the subdomains Gp with elastoplastic behaviour of the binder material, the system of 

equations of the problem of the equistressed reinforcement of bending plates consists of 3N + 2 
equations (2.1), (2.2), (1.24), (2.8), and (2.9) and is closed with respect to the following unknown 
functions: the deflection w, the equistressed reinforcement parametersAk, ~k and (ok and the thickness 
of the elastic layer in the binder h = h..  In the subdomains Ge with purely elastic behaviour of the 
binder material (h --/4), the system of resolvents consists of 3N + 1 equations (2.1), (2.2), (2.8) and 
(2.9) and is closed with respect to the unknown functions W,Ak, ill k and (o k (k = 1, 2 . . . . .  N). The boundary 
and edge conditions (2.10), (2.11), (2.14) and (1,34) must be specified for unique integration of the 
system of resolvents on the edges. The boundary between the zones of purely elastic and elastoplastic 
behaviour of the binder materials when there is a continuous change in the equistressed reinforcement 
structure in its is defined by Eq. (2.15). 

The system of equations of the equistressed reinforcement problem (2.1), (2.2), (1.24), (2.8), (2.9) 
which has been obtained and the static boundary conditions (2.10) and (2.11) corresponding to it show 
that the subproblems of the determining the deflection and the equistressed reinforcement parameters 
are related and they have to be solved simultaneously and that, as a whole, the system of equations 
and static boundary conditions is extremely non-linear. This non-linearity has a twofold origin: first, 
"structural" non-linearity (since the equistressed reinforcement parameters Ak, Ill k and (ok, which 
determine the structure of the material, are unknown functions) and, second, physical non-linearity in 
the zones where the binder material exhibits elastoplastic behaviour. All of this considerably complicates 
the qualitative analysis of the boundary-value problem of the equistressed reinforcement of bending 
plates and the development of methods for solving it. 

The characteristic equation of the resolving system has the form 

N 

P(x2) l"I (sinvk - X'zC°SVk) = 0 
k=l 

(2.16) 

The derivative x~ = dy2/dy 1 specifies the direction of the characteristic, and P(x~) is a fourth-order 
polynomial in x~, the coefficients of which depend on the values of the unknown functions w, ij, (Ok, ~t k 
and h. In subdomains with purely elastic behaviour of the binder material, in which it is necessary to 
put h = H in Eq. (2.4), the polynomial P(x~) is defined by the expression 

N 
P(xe2) = H a E a l ( 1  + x22) 2 H ~k + 

k=l 
N 

, 2 
+ Z(O'mllX22 -- 20"m12X2 + (Ym22 + qk(Y*k)(okl]k~kH~tl,  

k /=1 
l ¢ k  
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where 

gk = S l n ~ k - - X 2 C O S ~ k ,  Ilk = C O S ~ k + X 2 S l n ~ I k  

~k = (W,22--W,11)sin2~Ik+2W,12COS2~IIk; k = 1,2 ..... N 

and ~m0 are defined by expressions (1.26) on specifying that z = HI2. In the subdomains with elastoplastic 
behaviour of the binder material, the expression for the polynomial P(x~) becomes very cumbersome 
due to the complex expression for the operator C in (2.4) when h ~ H and we shall therefore not derive 
it here. 

The factors in (2.16) under the product sign, indicate that the system of resolvents has N real 
characteristics which coincide with the trajectories of the equistressed reinforcement. Depending on 
the values of the unknown functions wij, COk, ~k and h (that is, depending on the coefficients), the 
polynomial P(x~) can have a different number of real roots at different points of the domain G. 
Consequently, the system of resolvents of the problem of the equistressed reinforcement of bending 
plates is a quasi-linear system of the hybrid-composite type [9]. 

The solution of the problem of the equistressed reinforcement of plates in the case of elastoplastic 
bending possesses the same properties and special features as in the case of purely elastic bending [4]. 
On making the system of resolvents and boundary conditions dimensionless, by analogy with the 
procedure previously used in [5], a small parameter )~ = E/E1 can be separated out in the case of the 
dimensionless operators C, CF, DM and DF in relations (2.1), (2.10), and (2.11). After this, the methods 
of perturbation theory, similar to those used earlier in [5], can be employed to solve the equistressed 
reinforcement problem. 

We will now consider the question of the non-uniqueness of the solution of the problem of equistressed 
reinforcement of bending plates. On the one hand, the equistressed reinforcement problem possesses 
arbitrariness associated with the boundary conditions for the reinforcement intensities (1.34) and, the 
greater the numbers of groups of fibres which are used, the greater the number of these arbitrarinesses. 
By varying the functions o~0~ in the boundary conditions (1.34), it is possible to obtain bundles of solutions 
of the equistressed reinforcement problem from which schemes with the most acceptable mechanical, 
weight or technological properties can be chosen. On the other hand, by virtue of the substantially non- 
linear static boundary conditions (2.I0) and (2.11) and the conditions for the equistressed character of 
the reinforcement (2.8) with respect to the functions ~k, the equistressed reinforcement problem can 
have several solutions even in the case of fixed functions o~0k in the boundary conditions (1.34) which 
further extends the spectrum of solutions of this problem. (The possibility that several alternative solution 
of the equistressed reinforcement problem with fixed input data can exist is explained by the fact that 
this problem belongs to a series of inverse problems in the mechanics of a deformable solid [10].) 

3. E Q U I S T R E S S E D  R E I N F O R C E M E N T  OF PLATES WITH 
C Y L I N D R I C A L  B E N D I N G  

We will investigate the case of the cylindrical bending of an elongated rectangular plate which enables 
us to obtain a solution of the equistressed reinforcement problem in analytic form. For this purpose, 
we consider an elongated rectangular plate (ideally, of infinite length) of width D orientated along the 
Ox2 axis. Assuming that the load, the fixing and the reinforcement of the plate do not change in the 
longitudinal direction and neglecting local end effects, we find that the solution of the equistressed 
reinforcement problem will depend solely on the variable Xl. In this case, Eqs (2.1) and (2.9) can be 
integrated, after which the system of resolvents of the equistressed reinforcement problem takes the 
form 

12Mid(x1) - H  ~ , t c ° k c ° s  ~ k -  1 - ~ c ° k  [bl(h)w"+b2(h)sign(w")] = 12P(xl) (3.1) 
k k / 

tokcos~ = co.k = const~e0, k = 1,2 .. . . .  N (3.2) 

w"cose~k = -eJH = const ~0, k = 1, 2 .....  N (3.3) 

H = const, h ,  > H  h.  = 2~s (3.4) 

h ( X l )  = h., h . < H  ' EalJl_v+v21w,,i 
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(3.5) 

P0 and P1 are integration constants which are determined from the static boundary conditions, 0)*k are 
integration constant which, apart from H, have the meaning of the overall area of the cross-sections of 
the kth group of fibres which intersect an area of unit length (along x2) orthogonal to the xl direction 
[11] (0).k can be given instead of 0)0k(X2) = const in boundary conditions (1.34)), and a prime denotes 
differentiation with respect to x> 

It follows from system (3.1)-(3.4) that, in solving the equistressed reinforcement problem in the case 
of cylindrical bending, it is quite sufficient to embed two groups of reinforcement (PC = 2) in the plate 
which are made of the same material (El = E2, •, 1 = (Y* 2, Esl = Es2, gsl = Es2, e ,  1 = e,  2 and are packed 
with the same intensity o)1 = 0)2, symmetrically in the direction of x1(~1 = -~2), Then, by means of 
(3.2) and (3.3), the functions w" and 0)1 can be eliminated from Eqs (3.1) and (3.4), after which we obtain 

(3.6) 

(3.7) 

In the case of purely elastic behaviour of the binder material (h = H) ,  Eq. (3.6) is reduced to the 
form 

(3.8) 

When multiplied by COS311/1, Eq. (3.8) reduces to a fourth-order algebraic equation in cosl//1. 
Consequently, with the corresponding input data, this problem can have up to four different solutions 
which depend parametrically on c0,1, that is, on the amount of reinforcement embedded in the plate. 

In the case of elastoplastic behaviour of the binder material (h = h ,  < H), Eq. (3.6), after multi- 
plication by cos3~1 and taking account of relations (3.7), reduces to a seventh-order algebraic equation 
in cos~l. This means that Eq. (3.6) can have up to seven different solutions which depend parametrically 
o n  0),1. 

Of the whole set of real solutions of Eqs (3.6) and (3.8), only those which satisfy the physical constraints 
0)1 > 0, 0), - 20)1 - 0, ] cos~l I < 1 and the strength constraints (1.36) will be solutions of the equistressed 
reinforcement problem. 

We shall assume that the plate is rigidly clamped along the edge Xl = D and the static boundary 
conditions (2.10) and (2.11) when ~ = x are specified on the edge xl = 0. If there are no external 
transverse loads (p(xl) = 0, Fnz = 0), the case of purely cylindrical bending (P(xl) = P0 = Mn = const, 
P1 = 0 is realized and Eqs (3.6) and (3.8), when boundary conditions (1.34) are taken into account, 
respectively take the form 

(3.9) 

2 
2(Y,10)01COS2q/1 + E a l ( 1  - 2 0 ) o l ) e , 1 / c ° s  ~1 = 12Mn/H2,  O<-x 1 <-D (3.1o) 

where expressions (3.5) and (3.7) must be taken into account in relation (3.9). (When x 1 = 0, the 
equalities correspond to a static boundary condition with respect to the moment in the case of cylindrical 
transverse bending (3.6) and (3.8).) 

In the case of purely elastic behaviour of the binder material, Eq. (3.10), when multiplied by cos2~1, 
reduces to a biquadratic equation in cos~v Since the fibres are assumed to be entering the plate on 
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Material E, GPa o0. 2, MPa op, MPa ~, % v 

A D N  alloy 71.0 100 150 6.0 0.31 
Boron fibres 416.5 - 3150 0.2 0.23 

Table 2 

(1101 

0.2 
0.35 

0.2 
0.35 

12°29 ' 
40°47 ' 

56°59 ' 
67o57 ' 

Firs t(regular)  solution 
1.0490 0.1810 
1.7443 0.1088 
Second (singular) solution 

3.3696 I 0.0563 
7.0932 0.0268 

tmax 

0.7755 
0.8089 

0.2506 
0.2049 

the edgexl = 0, then, necessarily, cosIl/1 > 0. Hence, only the two real positive roots of Eq. (3.10), which 
depend parametrically on 0)01, will be solutions of the equistressed reinforcement problem. It follows 
from relations (2.5) and (2.7) that (Y.1 = E l e . 1  in the case of purely elastic bending. Dividing Eq. (3.10) 
by C~.l, a small parameter 7. = E/E,  which accompanies the second term of the left-hand side of (3.10), 
can be separated out. By analysing the solution of the biquadratic equation (3.10) it can be shown that 
all the unknown functions, corresponding to the first of the solutions of this equation, when account 
is taken of (3.3), have finite limits when 7. ~ 0. (This solutions is called a "regular" solution.) The second 
solution of Eq. (3.10) possesses the property that cos2~1 ~ 0 when X --+ 0 and this means that, according 
to (3.3), I w"l ~ ~.  (This solution is called a "singular" solution.) 

We will investigate the solution of the problem of the equistressed reinforcement of an elongated 
rectangular plate with cylindrical bending made of ADN aluminium alloy reinforced with boron fibres. 
(The mechanical characteristics of the phase materials of the boroaluminium [12] are shown in 
Table 1.) 

We will assume that the plate is loaded with a bending moment, the value of which is equal to 
M n = H2(Yl/12(p(xl)  = Fnz = 0) ( ~  = (Ypi is the ultimate strength of the boron fibres). In this case 
when the behaviour of the phase materials is ideally elastic, the solution of the problem of equistressed 
reinforcement at all points of the structure is given by formulae (3.3) and (3.10). The values of the 
unknown quantities gt I and I~"l = H Iw"I/(2C~) (~+~ = c~+~/E1), obtained for 0)01 = 0.2 and 0)01 = 0.35, 
are presented in Table 2. 

Comparison of the data presented in Table 2 shows that a change in 0)01, i.e. in the amount of 
reinforcement in the plate, leads to a significant change in the structure of the equistressed reinforcement 
and in the deformed state in the binder and it therefore makes senses to carry out a purposeful 
optimization in the set of schemes for the equistressed reinforcement of bending plates. For instance, 
of the four solutions presented in Table 2, the scheme corresponding to the regular solution of the 
problem of equistressed reinforcement when 0)01 = 0.2 will be the best from the point of view of the 
strength of the binder (min [w"[ since, in the case of purely elastic cylindrical bending, the magnitude 
of cy is proportional to I w"l, see (1.23) and (1.19)) and there is the least consumption of the reinforcement 
(min 0)01). (It generally follows from Table 2 and from numerous calculations we have carried out that 
equistressed reinforcement schemes which correspond to a regular solution of the problem are more 
effective from the point of view of the strength of the binder than schemes corresponding to the singular 
solution.) 

It has been assumed above that the phase materials behave in an ideally elastic manner. We will now 
estimate the carrying capacity of real boroaluminium plates which are bent with cylindrical bending. 
It is obvious that, when considering purely elastic bending, the carrying capacity of a plate will be defined 
by the occurrence of plastic deformations in the binder and, also, by the breakdown or loss of stability 
of the elastically brittle boron fibres on the faces of the plate. 

In order to estimate the carrying capacity of equistressed reinforced plates, we will represent the 
bending moment Mn in the form 
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- -  + 2 

M n = tMnOl H / 6 ,  Mn = 0.5, t > 0  (3.11) 

where t is a loading parameter. 
Using the well-known formulae [12] 

o = 2,]031El[3(l_031)Ell el, = Gml[O31[l_o31]E11 

We will estimate the critical deformations of the fibres at which they lose stability in a stretching mode 
(a°,) or a shear mode (e~). Calculations showed that, in the case of the boroaluminium composition 
being considered over the real range of change in the reinforcement intensity (0.05 _< 03a < 0.95), the 

0 and 1 quantities e, e, are more than twice as great as the value of the limiting strain (Epl = ~m/E1) of 
the boron fibres under tension. (When calculating the quantities e0, and ~,, the possibil@ of the 
occurrence of plastic deformations in the binder was taken into account.) Consequently, in the case of 
transverse bending, the carrying capacity of the boron fibres will be exhausted due to their fracture under 
tension and not due to loss of stability accompanying compression. 

In order to determine the greatest value of the loading parameter (t~) accompanying purely elastic 
cylindrical bending, it is necessary to estimate the limiting value of [ w"[, at which the stressed state in 
the binder on the faces reaches the yield point %. Here, h = h ,  = H and this means that, from expressions 
(3.4), we obtain 

Iw;'l = 2 6 s / ( H E a l ~ / 1 - v + v 2 ) ,  Os = ~0,2 (3.12) 

Since it is necessary to estimate the carrying capacity of a structure with equistressed reinforcement 
structures which have already been obtained, the strain modulus e~ of the reinforcement on the faces 
of the plate, corresponding to the value I w7l can be determined from relations (3.3) and (3.12): 

El =- ne:/21 : IHw:/21cos%l (3.13) 

Substituting expressions (3.11)-(3.13) into Eq. (3.10) and taking account of the equality c~, 1 = ElelSH, 
we obtain 

- s  2 - -  
t s = [2 ~:~ 0301COS2~/1 + gal(1 - 20301) e 1/cos Vl]/IM.[ 
-S  $ + 
E l = E l / E 1 ,  ~ , =  E/E 1 

(3.14) 

The values of ts and ~, corresponding to the equistressed reinforced structures, have been included in 
Table 2. The values of ts and [g~[ are identical by virtue of the meaning of these quantities (compare 
relations (3.10), (3.11) and (3.14)). 

It follows from a comparison of the values of t s that a plate corresponding to the regular solution of 
the equistressed reinforcement problem with 0301 = 0.2 has the greatest carrying capacity and that a 
structure corresponding to the singular solution with 6001 = 0.35 has the lowest carrying capacity. 
According to its meaning, the quantity [ ~ [ is equal to the ratio of the stress modulus in the reinforcement 
[rYm [ on the faces of the plate (when there are plastic deformations in the binder) to the value of the 
ultimate strength of the fibres (Ypl. It can therefore be concluded from a comparison of the magnitude 
of ]g~[ presented in Table 2 that the carrying capacity of the reinforcement in the case of the purely 
elastic bending of a boroaluminium plate is only slightly utilized (to the extent of less than 20%). 

We will now estimate the carrying capacity of equistressed reinforced plates with cylindrical bending 
in which the carrying capacity of the fibres is utilized to the maximum degree, that is, we require that 
the stresses in the fibres on the faces of the plate should be equal in modulus to their ultimate strength 
( 1~01 [ = (Ypl)" Then, plastic deformations occur in the binder in the outer layers of the plate, adjacent 
to the faces. 

In order to estimate the carrying capacity of the structures in question when the binder material 
behaves in an elastoplastic manner, we first need to determine the relativ~ thickness h = h/H of the 
elastic layer in the binder. It follows from a comparison of expressions (3.13) and (3.7), where le,11 = 
2Epl , that the value of h is identical with the value of I~11. (This fact is a consequence of Kirchhoff's 
hypothesis.) With the known value of h, from Eq. (3.9), taking expressions (3.11) into account, we obtain 
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the maximum values of the loading parameter tma x for the case when the binder material behaves in 
an elastoplastic manner 

tma x = {21~.IlH2f..001COS211/1 + 

+ (1 - 2 % 1 ) [ ( e a i  h3 + 4 e ,  (/-/3 - h3)/3)[e,1]/(I-Icos2vl) + (3 .15)  

+ ,,f3 (13 s - E , ~ , ) ( H  2 - h2)]  }](21Mn]H2(~I) 

where ~,1 = 2CYpl, e.1 = 2epl (see (2.5)-(2.7) when %1 = ~Ypl = ~Y-~) and the values of ~1, co01 and 
h = h H  are taken from Table 2. 

The values of tmax obtained using formula (3.15) are given in Table 2. A comparison of the values of 
ts and tmax, which are given in the same rows of Table 2, shows that, by virtue of the greatest utilization 
of the carrying capacity of the fibres, the carrying capacity of the bending equistressed reinforced plates 
in the case of elastoplastic deformation of the binder is 4-8 times higher than the carrying capacity of 
the corresponding elastic structures. Here, the structure, corresponding to the regular solution with 
0~01 = 0.35, possess the greatest carrying capacity in the inelastic case and not the plate corresponding 
to the regular solution with co01 = 0.2 which, in the case of purely elastic bending, is the best of all the 
plates considered. Consequently, equistressed reinforcement schemes which are the most effective from 
strength considerations in the case of purely elastic bending may not turn out to be quite so effective 
in the case of elastoplastic bending. 
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